Friday, October 29, 2010

Low-Carb Diets And Physical Performance

Fascinating stuff, from "Ketogenic diets and physical performance" in Nutrition & Metabolism by Stephen D. Phinney.

"This second study utilized competitive bicycle racers as subjects, confined to a metabolic ward for 5 weeks. In the first week, subjects ate a weight maintenance (eucaloric) diet providing 67% of non-protein energy as carbohydrate, during which time baseline performance studies were performed. This was followed by 4 weeks of a eucaloric ketogenic diet (EKD) providing 83% of energy as fat, 15% as protein, and less than 3% as carbohydrate. The meat, fish, and poultry that provided this diets protein, also provided 1.5 g/d of potassium and was prepared to contain 2 g/d of sodium. These inherent minerals were supplemented daily with an additional 1 g of potassium as bicarbonate, 3 grams of sodium as bouillon, 600 mg of calcium, 300 mg of magnesium, and a standard multivitamin.

"The bicyclist subjects of this study noted a modest decline in their energy level while on training rides during the first week of the Inuit diet, after which subjective performance was reasonably restored except for their sprint capability, which remained constrained during the period of carbohydrate restriction. On average, subjects lost 0.7 kg in the first week of the EKD, after which their weight remained stable. Total body potassium (by 40K counting) revealed a 2% reduction in the first 2 weeks (commensurate with the muscle glycogen depletion documented by biopsy), after which it remained stable in the 4th week of the EKD. These results are consistent with the observed reduction in body glycogen stores but otherwise excellent preservation of lean body mass during the EKD.

"The results of physical performance testing are presented in Table 2. What is remarkable about these data is the lack of change in aerobic performance parameters across the 4-week adaptation period of the EKD. The endurance exercise test on the cycle ergometer was performed at 65% of VO2max, which translates in these highly trained athletes into a rate of energy expenditure of 960 kcal/hr. At this high level of energy expenditure, it is notable that the second test was performed at a mean respiratory quotient of 0.72, indicating that virtually all of the substrate for this high energy output was coming from fat. This is consistent with measures before and after exercise of muscle glycogen and blood glucose oxidation (data not shown), which revealed marked reductions in the use of these carbohydrate-derived substrates after adaptation to the EKD."